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Gvozdev [ 1 I was apparently the first to propose an idea for utilizing 

the rigid-plastic analysis for the investigation of the dynamic behavior 

of plates. He used this idea in connection with the strength determina- 

tion of rectangular plates under the action of explosive loads. (A more 

detailed bibliogaphy can be found in the review [ 2 1 by Rakhmatulin and 

the author*). 

The theory of the axisymmetrical dynamic bending of rigid-plastic 

circular plates was established by Hopkins and Prager [ 3 I. They considered 

a freely-supported circular plate under the action of a uniformly distri- 

buted load which was kept constant for some period of time and then 

suddenly removed. Wang and Hopkins [ 4 ] analyzed plastic deformations of 

a circular built-in plate, all points of which were given the same velo- 

city at an initial instant. Both solutions pertain to continuous plates. 

Nothing has yet been published on the annuli. 

Nor are there any publications on experimental verification of the 

theory of the dynamic bending of rigid-plastic plates. This is apparently 

due to the difficulties encountered in setting up experiments to corres- 

pond exactly with the cases for which theoretical solutions are found. 

For beams, however, experimental studies conducted by Parkes [ 5 I have 

verified a series of theoretical solutions. 

* The problem of an annular plate under the action of a constant load 

and in its simple formulation, viz., assuming that the static deform- 

ations of the plate are preserved during the motion (which is charac- 

terised by the forming of a stationary hinge circle along the clamped 

edge and by the transition of a flat plate into a truncated cone). was 

treated at MGU [Moscow State University] by Tsimbal and Mitskevich. 
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Fig. 1. 

A simple solution of a problem which can be verified experimentally 

is given in this paper. Consider a thin plate in the shape of an annulus 

which is clamped along its inner edge r = a and free along its outer edge 

r = R. The outer edge is given a constant velocity vO, which at some 

later time t = T is suddenly removed. The subsequent motion of the plate 

consists of three phases. During the first phase, 0 < t < t+, the hinge 

circle which appears at the initial moment along the contour to which the 

impulse was applied is moving towards the center of the plate and reaches 

the clamped edge at time t+. It is assumed that t+ < T. (The case when 

t+ > T can be considered analogously.) The second phase is characterized 

by the formulation of a stationary hinge along the clamped edge, r = a. 

The plate then rotates uniformly about this hinge, and no inertia forces 

are present. The third phase starts after the cessation of the applied 

velocity vO along the free edge, r = R. The plate proceeds to rotate about 

the same hinge along the clamped edge r = a. The duration of each phase 

of the motion, the deformation of the plate and the distribution of the 

shear forces and bending moments are determined in this paper. 

1. Basic considerations. It is assumed that the plate is made of a 

rigid-ideally plastic material which obeys Tresca’s yield condition and 

the ass’ociated flow rule. Let us denote th; bending moments in the radial 

and tangential directions by M and N respectively. The yield locus in the 

MN plane for this case is a hexagon ABCDEF. Fig. 1. 

At the initial moment, t = 0, the plate is in the equilibrium position 

(Fig. 2a). Thus, the initial conditions for the deflections are 

W (r, 0) = WI (r, 0) = 0 (1.1) 

At the time t = 0, the contour r = R is displaced in the axial direction 

with a given constant velocity vO during the interval 0 < t < T. 

It is necessary for the solution of the problem to assume a certain 

deformation velocity field. Dynamic solutions of the plate problems fre- 

quently start with an assumption of the velocity field which corresponds 

to the static problem of the limiting state of the plate. Obviously this 
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approach is not applicable in the given case, for when a limiting ring- 

wise pressure is acting along the contour r = R. the hinge is formed along 

the edge t- = a. The plate starts to rotate about this hinge and will 

change its shape from a flat to a truncated cone. If we assume the exist- 

ence of a similar velocity field in the dynamic problem, then, the rota- 

tion about the contour r = a being uniform, there will be no inertia 

forces, and we come to the absurd conclusion that no matter what the 

magnitude of the velocity v,, is, the strength of the plate (the shear 
force at r = R) will remain constant and equal to the limiting static 

strength. Thus, some other velocity field has to be accepted. 

Let us assume that along the contour r = R at the initial moment t = 0, 

there appears a non-stationary hinge circle. the radius p of which is de- 

creasing. At the end of the first phase of the motion p = a. For conven- 

ience the time for each phase is counted from zero. The times will be de- 

noted by ti, t2, t., for the first, second and third phase respectively. 

Let us introduce the following dimensionless magnitudes 

where ,U is the surface density of the plate, Q the shear force and kr 

and kd the curvature rates in the radial and tangential directions res- 

pectively. 

The dot indicates differentiation with respect to t. or r iS z denotes 

the total bending, t = z1 for the first phase (also t 2 tl), z = z1 + z* 
for the second and z = x1 + ~2 + z3 for the third. 

2. The first phase of the notion. Assume that during the first phase 

the velocity field is determined by the following relationship 

For the accelerations we obtain 

Parkes [5 I used similar representation for a somewhat different prob- 
lem, viz., for a beam subjected to the impact of a finite mass. 

The distribution of the velocities and accelerations is shown in Fig.2b 

and Fig. 2c. From (1.2) and (2.1) we find the rates of change of the 

curvature 
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From (2.3) we conclude that for c ( rl \< 1 the curvature Velocity Vector 

is orthogonal to the side DE of the yield locus. To the circle rl = 1 

corresponds regime E, and to the non-stationary hinge circle 7 = 5‘ corres- 

ponds regime D. The annulus a < 7 < c is also in regime D. 

Fig. 2. 

Hence it follows that in this region 

qso (2.4) 

The equation of the dynamic equilibrium which takes (2.41 into account 

can be written as follows 

Noticing that n = --I, and using (2.2) we get 

(2.5) 

(2.6) 

Integrating this equation between the limits II = - 1 for t = 6 and 
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I= 0 for n = 1, we find the velocity of the motion of the hinge circle, 

It follows that 
e = - [(I - 5) (1 + SE)]-’ (2.7) 

71 = 48 - E2 - 5 + c 

Where c is an arbitrary constant. This constant can be determined from 
the condition that 6 = 1 for r1 = 0. Thus, c = 1. Hence, 

Tl = (1 - 4) (1 - 42) (2.8) 

The instant rl+, the end of the first phase, can be found by letting 
t= a. Thus we have 

71 f = (1 -a) (I- a2) (2.2) 

From (2.2), (2.5) and (2.7) it is possible to determine the shear 
force 

4 = - 2 [(i - 5)s (1 + 34)]-’ [3 in - 12) - 2 (+$8)] 

Along the edge of application of the impulse we have 1 = 1 

q = - 2 (1 + 25) [(I - e, (1 + 301-l (2.11) 

At the initial instant of the action of the impulse 5 = 1 and shear 
force has a singulari.ty on the circle I) = 1. This is to be expected, 
since otherwise for rl = 1 the radial moment could not reach its limiting 
value a = - 1. The shear stress is zero along the clamped edge ‘1 = a 

during the whole first phase of the motion. Radial bending moments are 
determined with help of the equalities (2.5) and (2.7). We obtain 

m=--l -/-[(l-E,)s(l +3~)]-1[~2(2-~)+~-~(4-3~)~S+2~2(25.-3)] (2.12) 

It is easy to verify that for ‘1 = c the moment a reaches an extremum, 
w=- 1. Thus. the yield stress is nowhere exceeded. 

For the determination of the deflection zl, we can employ several 
different procedures. First of all 4 can be eliminated from (2.1) by means 

of (2.81, and then (2.1) can be directly integrated with respect to rl. 
However, it is simpler to eliminate the time r 1 from (2.1) and (2.8) and 
then to integrate with respect to 6. We get 

dz = - (‘1 - 5) (1 + 3e) dc (2.13j 

Hence it follows 

: 
z=- (?--)(1+35)de=~(rl--)2(i+2e+~) 

s 
ri 

(2.14) 

An alternative method for determination of the deflection was shown by 
Hopkins and Prager [ 3 1. Since along the hinge circle f = [ (r 1, there 
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exists a jump 

1 ;j, 

I. I - 
JY 

_ (I --E)-’ 

and since it is known [ 3 I that 

Then, taking (2.7) into account, it follows that 

(%.l:Jj 

(2.1(j), 

(2.17) 

Since the hinge circle is moving into an undisturbed region inside 

which a2 ,/a q2 = 0, the following must be satisfied 

(2.28) 

Taking into account that in the disturbed region f < q < 1 according 

to (2.1), d2z/aq2= 0, we have 

Integrating (2.19) with the boundary conditions C?Z( I$, t )/a~= Z( c, q) = 0, 

we again obtain (2.14). Putting [ = a in (2.14) we get the deflections 

+ at the end of the first phase. t= z 

The diagrams of the distribution of Q, M and N along the radius r are 

shown in Figs. 2d. 2e, and 2f. 

3. Second phase. In the second phase the plate is rotating uniformly 

about the clamped circle n = a. The displacements z2 in this phase are 

determined from 

v--a 
22 = l-_a 72 (3.1) 

Let us denote the duration of the second phase by r2+, and let k = 

r2 1’ f/z + Thus, at the end of the second phase the deflection z1 = z2+ is 

iz* =. h_ (q - a) (1 - a’) 

The shear forces and the bending moments in the second phase are the 

sa.me as for the limiting static loading, [ 6 1. 

4. Third phase. The third phase is characterized by the rotation of the 

plate, due to inertia, about the stationary hinge circl,e q = a. The de- 

flections z~(T], r3) are sought in the following form: 
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where Z(r ) is an unknown function of time. To determinate this function 
3 

we utilize the dynamic equilibrium equation, which in this case we write 

as follows: 

Here we have allowed for the fact that Q = 0 for 9 = 1. Using the 

arguments which were applied for the first phase, it follows that n = - 1. 

Substituting (3.1) into (3.2) and integrating we find 

Taking into account that n(a, r3) = ~(1, r3) = 0. we have z = - (3 - 

5a + a* + .7)-l a Noticing that t(O) = 1 and Z(O) = 0, we get 

z z g _ + (t( ___ 5a + a’ _/_ a:%)-lrc (;-I*‘l) 

The plate will stop rotating at the instant r3+ = 3 - 5a + c? + a3, 

and the total stopping time 7+ = 7 1+ + r2+ + r3+, The magnitude of the 

total deflection at the instant 7 = 7’ is 
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